A Spatial Competition Model of Knowledge Spillover Entrepreneurship

Zoltan J. Acs School of Public Policy George Mason University

November 13, 2009

Outline

- Introduction
- Knowledge Spillover Entrepreneurship
- Competition for knowledge
- Hypothesis
- Results
- Conclusion

Introduction

- Role of entrepreneurial process and knowledge spillover in the economic growth and prosperity
- Explores the paradox of incumbent firms as both a *cause* and *constraint* of knowledge spillover entrepreneurship

Knowledge spillover entrepreneurship

$$E^* = (1/\beta)f(\pi^*[A_{opp}, \theta] - w)$$

where E^* = level of knowledge spillover entrepreneurship

- β = institutional constraints
- $\pi^* = \text{profit}$
- A_{opp} = knowledge "available" from incumbents
 - θ = efficiency

$$A_{\text{opp}} = (A - A_c)$$
$$\theta = A_c/A$$

where A = new knowledge

 A_c = knowledge not commercialized or appropriated by the incumbent firm

Competition for knowledge

- Spatial competition model
 - Distinction between knowledge creation and knowledge application, and R&D
 - Disagreements between the agents over new idea and approach
- Knowledge created → Local stock of generic knowledge
- Spatial proximity \rightarrow Knowledge available to all
- Would-be entrepreneurs → Exploit new knowledge

Hypotheses

- **Hypothesis 1**: Ceteris paribus, the rate of **KSE** in a region *increases* with expansions of the local stock of knowledge.
- **Hypothesis 2**: Ceteris paribus, because industry and university research contribute to the pool of would-be entrepreneurs as well as the stock of new knowledge, the rate of **KSE** *increases* with the number of incumbents and the number of universities conducting research in the region.
- **Hypothesis 3**: Ceteris paribus, because *employment* is a necessary pre-condition for individuals to become would-be entrepreneurs, the rate of knowledge spillover entrepreneurship *decreases* with higher rates of unemployment in the region.
- **Hypothesis 4**: Ceteris paribus, the increase in **KSE** following the expansion of the local stock of generic knowledge is *negatively* moderated by an increase in the number of incumbent organizations.

Research Design: Colorado

- HT new firm Birth Rate (per 1000 workers) 0.16
- Establishment size # workers/ # establishments (-)
- Per Capita Income Growth annual change (+)
- Density, population per sq. miles (+)
- Unemployment Rate in local area (-)
- R&D Universities, annual research funding (+)
- Utility Patents (NSF) (+)
- Incumbents, # business with +100 employees (+)

$$Y_{it} = \alpha + \beta_1 P_{it-1} + \beta_2 I_{it-1} + \beta_3 (P \times I)_{it-1} + \beta_4 Z + \mu_i + \epsilon_{it}$$

$$Y_{it} = \gamma Y_{it-1} + \rho W Y_{jt} + X_{it-1}\beta + \mu_i + \epsilon_{it}$$
 where $i \neq j$

$$\Delta Y_{it} = \gamma \Delta Y_{it-1} + \rho \Delta W Y_{jt} + \Delta X_{it-1}\beta + \epsilon_{it}$$

where Y_{it} = the rate of firm births in county i in year t

P = patents

I = incumbents

Z = control variables

 α = intercept

 μ_i and ϵ_{it} = error terms

W = blocked diagonal matrix associated with spatial weight matrix

 γ = temporal autocorrelation coefficient for the rate of firm births

 ρ = spatial autocorrelation coefficient for the rate of firm births

Driscoll-Kraay fixed effects estimates

Variables	Complete Model		Denver Removed		Outliers Removed		Outliers	
	IVIOD		Remov	ea	Remove	20	Dummie	
Establishment Size	-0.013	*	-0.012	*	-0.013	*	-0.013	
	[-2.16]	- I	[-2.05]		[-2.16]		[-2.17]	
Per Capita Income Growth	0.108		0.125		0.108		0.107	
and heating in the second second	[0.71]		[0.81]		[0.70]		[0.70]	
Density	0.000	**	0.003	**	0.001	**	0.000	
	[3.74]	Ť	[4.09]		[3.68]		[4.44]	
Unemployment Rate	-0.024	**	-0.023	**	-0.023	**	-0.023	
	[-2.42]		[-2.42]		[-2.42]		[-2.42]	
R&D Universities	0.028	**	0.029	*	0.022		0.031	
	[2.50]		[1.96]		[1.63]		[3.03]	
Patents	1.860	**	1.275	*	2.445	**	1.950	
	[2.77]	- 8	[2.07]		[2.67]		[3.23]	
Incumbents	1.509	**	-0.034	i j	1.691	**	1.509	
	[4.25]	Î	[-0.17]		[3.86]		[4.55]	
Patents x incumbents	-5.978	**	-3.757	*	-8.251	**	-6.239	
	[-2.64]		[-1.91]		[-2.51]	;	[-3.08]	
Constant	0.425	**	0.359	*	0.413	**	0.420	
	[2.54]	ļ	[2.00]		[2.45]		[2.59]	
No. of Observations	630	630		620		626		
Number of Panels (Counties)	63	63		62		63		
F-Statistic	274.2	274.2**		1147**		139.7**		
R-Squared	0.13	0.13		0.09		0.13		
Within R-squared	0.07	0.07		0.07		0.07		

Conclusion

- The increase in the rate **NFF** is highest when increase patents and incumbents is high.
- The second highest rate of **NFF** when high increase in patents and low incumbents.
- The third highest rate of **NFF** when low increase in patents and high incumbents.
- Knowledge is more important than incumbents which is what we expect from **KSE**.