Corporate Support for Non-Private Research:
Global and Local Sourcing of Competences and Expertise

Jeffrey Alexander, Ph.D.
Senior Science & Technology Policy Analyst
SRI International
Arlington, VA
AKA
Synthetic Proto-Thinking on
Argument

• Convergence through synthesizing multiple streams of research literature
 – Strategy & theory of the firm
 – Innovation management & technology strategy
 – Social movements & organization science

• Discussion of propositions raised by synthesis of concepts

• Early (& incomplete) empirical findings
Synthesis in Strategy

Literatures - I

• Knowledge-based view of the firm (Nonaka & Takeuchi)

• Organizational learning (Huber)

• Dynamic capabilities (Teece et al)
 – Including organizational ambidexterity, etc.
Synthesis in Strategy Literatures - II

- Dynamic capabilities
- Alliance theory (Gomes-Casseres, Hagedoorn)
- "Learning" alliances (Doz)
Synthesis in Innovation

Literatures - I

• Evolutionary view of innovation (Rosenberg, Nelson)

• Real options theory (Bowman & Hurry)

• Strategic technology platforms (Meyer, Cusumano)
Synthesis in Innovation Literatures - II

- Strategic technology platforms

- Complexity in industrial technology (Rycroft & Kash)

- Science as “search” (Fleming & Sorenson)
Synthesis in Social Organization Literature - I

- Social movements (McAdam et al)
- Social capital (Putnam, Fountain)
- Institutional innovation (Van den Ven et al)
Synthesis in Social Organization Literature - II

• Institutional innovation

• Role of trust in innovation (Bidault & Castello)

• Innovation networks & communities (Hage)
Synthetized Theory

- Learning alliances
- Science as search
- Innovation networks & communities
- Theory of collective networks of institutions for scientific & technological innovation
Propositions for Proto-Thinking

• Research collaborations among diverse institutions are more likely to produce significant innovation
 – Diversity increases opportunities for learning
 – Learning will lead to discovery of new strategic technology options
 – BUT diversity can also hinder innovation due to cultural and organizational barriers
Propositions for Proto-Thinking

• Increasingly science-intensive industries will derive greater value from collaborations with public sector research institutions
 – Greater demand for application-oriented fundamental research
 – Scientific expertise tends to be decentralized and must be integrated by firms
 – BUT expertise can also limit success across competence-destroying innovation
Propositions for Proto-Thinking

• Firms in science-intensive industries will partner with public research institutions to access specific pools of talent and expertise most relevant to the firm’s technology platforms
 – Scientific resources contribute to more efficient and effective search for new options
 – Access to students will aid recruiting of candidates with strategic knowledge and talent
Central Constructs

• “Diversity” in institutional form & purpose

• Science-intensity of technological advance

• Identification and evaluation of scientific expertise and talent
Results of Previous Macro-Study

- Firms are increasing trans-national and trans-institutional research collaborations, regardless of their industry
 - Industrial technology in general is increasingly science-based

- Firms with greater diversity in technology needs (measured by industry-level diversification) are more frequent collaborators
 - Numerous potential confounding and contravening factors

- No strong correlation between firm’s industry and scientific expertise of the partner organizations’ nations
 - Dataset lacks sufficient granularity
Sample Cases of Corporate Collaborative Networks
HP Strategic Technology Platforms

- Digital Commercial Print
- Content Transformation
- Immersive Interaction
- Information Management
- Sustainability
- Analytics
- Cloud
- Intelligent Infrastructure

14 November 2009

Jeffrey M. Alexander
IBM’s Open Collaborative Research (OCR) Success

- Industry-leading IP practices create over 45 highly developed research relationships
 - Rice University
 - Indian School of Business
 - UC Davis
 - Carnegie Mellon University
 - Imperial College London
 - Technion
 - University of Dundee
 - Columbia University
 - Tsinghua University

- Recruiting/Talent Pipeline
 - PhD interns and student thesis
 - Academic visitors and employee development
 - RSM hires

- Leveraged external funding sources
 - EPSRC (Engineering and Physical Sciences Research Council)
 - MICRO (Microelectronics Innovation and Computer Research Opportunities)
 - NSF (National Science Foundation)

- 85+ scientific publications & 20+ open source contributions

- Awards
 - 1st Place: ACM CHI Student Research Competition for Interface Metaphor Design and Instant Messaging for Older Adults
 - Service Research Innovation Institute’s Services Partnership Award to Rambam Hospital, Technion and IBM Research

Source: IBM
Monsanto Has an Extensive Alliance Network with Universities & Research Institutions

Plant Science Research Relationships
- 90+ U.S. Universities & Research Institutions
- 70+ International Universities & Institutions

Regulatory Science
- 70+ Universities and Institutions for Ecological, Product Safety and Product Characterization Studies

Product Development Field Trials
- 90+ Universities and Research Institutions in the U.S. and Around the World

Source: Monsanto
Philips Innovation Ecosystem
Implications for Future Research

• Need to improve measurement of technological learning
 – Changes in corporate patent portfolio categorized by technical field
 – Relationship of corporate & non-private patent filings (co-patenting?)
 – Relating bibliometrics to patent data

• Need a better understanding of how firms construct alliance portfolios for research collaborations
 – Moving from ad-hoc to strategic approaches
 – More granular data on public institution research expertise
 – More attention to measures of tacit knowledge exchange (see Ternouth et al)
 – Case studies to look at corporate-level and industry-level practices

• Need to examine antecedents and key success factors in “successful” research collaborations
Some Tentative Observations from Case Research

• Collaboration is NOT a natural behavior in most organizations
 – Researchers tend to socialize and interact within their own discipline or field
 – Attempts to cross organizational boundaries face significant barriers
 • Misaligned incentives
 • Conflicts over governance of resources and processes

• A “community of innovation” is more than a collection of people and assets
 – Requires a process of socialization—with real community involvement
 – Innovation involves risk, which requires trust
 – Communities need commonality
Potential Emergent Model for Successful Public-Private Research Collaborations

Knowledge sharing & exchange

Social capital & affinity

Leadership Governance Incentives

Interaction

Learning processes & communities of learning

Socialization

14 November 2009

Jeffrey M. Alexander