A Spatial Competition Model of Knowledge Spillover Entrepreneurship

Zoltan J. Acs
School of Public Policy
George Mason University

November 13, 2009
Outline

• Introduction
• Knowledge Spillover Entrepreneurship
• Competition for knowledge
• Hypothesis
• Results
• Conclusion
Introduction

• Role of entrepreneurial process and knowledge spillover in the economic growth and prosperity

• Explores the paradox of incumbent firms as both a cause and constraint of knowledge spillover entrepreneurship
Knowledge spillover entrepreneurship

- Industry Knowledge Spillovers ($A_{opp, \theta}$)
- Public Knowledge Spillovers (Universities)

→ Knowledge Spillover Entrepreneurship
$$E^* = \frac{1}{\beta} f(\pi^*[A_{opp}, \theta] - w)$$

where E^* = level of knowledge spillover entrepreneurship

β = institutional constraints

π^* = profit

A_{opp} = knowledge “available” from incumbents

θ = efficiency

$$A_{opp} = (A - A_c)$$

$$\theta = \frac{A_c}{A}$$

where A = new knowledge

A_c = knowledge not commercialized or appropriated by the incumbent firm
Competition for knowledge

Knowledge Creation
- Industry Research by Incumbents
- Academic Research by Universities

Local Stock of Generic Knowledge (Patents)

Knowledge Application
- Knowledge Spillover Entrepreneurship
- Commercial Application By Incumbents
• Spatial competition model
 – Distinction between knowledge creation and knowledge application, and R&D
 – Disagreements between the agents over new idea and approach

• Knowledge created \(\rightarrow \) Local stock of generic knowledge
• Spatial proximity \(\rightarrow \) Knowledge available to all
• Would-be entrepreneurs \(\rightarrow \) Exploit new knowledge
Hypotheses

Local Knowledge Stock

(+)

Knowledge Spillover Entrepreneurship

(-)

Incumbent Firm Commercial Application
• **Hypothesis 1**: Ceteris paribus, the rate of KSE in a region *increases* with expansions of the local stock of knowledge.

• **Hypothesis 2**: Ceteris paribus, because industry and university research contribute to the pool of would-be entrepreneurs as well as the stock of new knowledge, the rate of KSE *increases* with the number of incumbents and the number of universities conducting research in the region.

• **Hypothesis 3**: Ceteris paribus, because employment is a necessary pre-condition for individuals to become would-be entrepreneurs, the rate of knowledge spillover entrepreneurship *decreases* with higher rates of unemployment in the region.

• **Hypothesis 4**: Ceteris paribus, the increase in KSE following the expansion of the local stock of generic knowledge is *negatively* moderated by an increase in the number of incumbent organizations.
Research Design: Colorado

- HT new firm Birth Rate (per 1000 workers) 0.16
- Establishment size # workers/ # establishments (-)
- Per Capita Income Growth annual change (+)
- Density, population per sq. miles (+)
- Unemployment Rate in local area (-)
- R&D Universities, annual research funding (+)
- Utility Patents (NSF) (+)
- Incumbents, # business with +100 employees (+)
\[Y_{it} = \alpha + \beta_1 P_{it-1} + \beta_2 I_{it-1} + \beta_3 (P \times I)_{it-1} + \beta_4 Z + \mu_i + \epsilon_{it} \]

\[Y_{it} = \gamma Y_{it-1} + \rho W Y_{jt} + X_{it-1} \beta + \mu_i + \epsilon_{it} \text{ where } i \neq j \]

\[\Delta Y_{it} = \gamma \Delta Y_{it-1} + \rho \Delta W Y_{jt} + \Delta X_{it-1} \beta + \epsilon_{it} \]

where \(Y_{it} \) = the rate of firm births in county \(i \) in year \(t \)

\(P \) = patents

\(I \) = incumbents

\(Z \) = control variables

\(\alpha \) = intercept

\(\mu_i \) and \(\epsilon_{it} \) = error terms

\(W \) = blocked diagonal matrix associated with spatial weight matrix

\(\gamma \) = temporal autocorrelation coefficient for the rate of firm births

\(\rho \) = spatial autocorrelation coefficient for the rate of firm births
Driscoll-Kraay fixed effects estimates

<table>
<thead>
<tr>
<th>Variables</th>
<th>Complete Model</th>
<th>Denver Removed</th>
<th>Outliers Removed</th>
<th>Outliers Dummied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment Size</td>
<td>-0.013</td>
<td>-0.012</td>
<td>-0.013</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>[-2.16]</td>
<td>[-2.05]</td>
<td>[-2.16]</td>
<td>[-2.17]</td>
</tr>
<tr>
<td>Per Capita Income Growth</td>
<td>0.108</td>
<td>0.125</td>
<td>0.108</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>[0.71]</td>
<td>[0.81]</td>
<td>[0.70]</td>
<td>[0.70]</td>
</tr>
<tr>
<td>Density</td>
<td>0.000 **</td>
<td>0.003 **</td>
<td>0.001 **</td>
<td>0.000 *</td>
</tr>
<tr>
<td></td>
<td>[3.74]</td>
<td>[4.09]</td>
<td>[3.66]</td>
<td>[4.44]</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>-0.024 **</td>
<td>-0.023 **</td>
<td>-0.023 **</td>
<td>-0.023</td>
</tr>
<tr>
<td>R&D Universities</td>
<td>0.028 **</td>
<td>0.029 *</td>
<td>0.022</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>[2.50]</td>
<td>[1.96]</td>
<td>[1.63]</td>
<td>[3.03]</td>
</tr>
<tr>
<td>Patents</td>
<td>1.860 **</td>
<td>1.275 *</td>
<td>2.445 **</td>
<td>1.950 *</td>
</tr>
<tr>
<td></td>
<td>[2.77]</td>
<td>[2.07]</td>
<td>[2.67]</td>
<td>[3.23]</td>
</tr>
<tr>
<td>Incumbents</td>
<td>1.509 **</td>
<td>-0.034</td>
<td>1.691 **</td>
<td>1.509 *</td>
</tr>
<tr>
<td></td>
<td>[4.25]</td>
<td>[-0.17]</td>
<td>[3.86]</td>
<td>[4.55]</td>
</tr>
<tr>
<td>Patents x Incumbents</td>
<td>-5.978 **</td>
<td>-3.757 **</td>
<td>-8.251 **</td>
<td>-6.239</td>
</tr>
<tr>
<td></td>
<td>[-2.64]</td>
<td>[-1.91]</td>
<td>[-2.51]</td>
<td>[-3.08]</td>
</tr>
<tr>
<td>Constant</td>
<td>0.425 **</td>
<td>0.359</td>
<td>0.413 **</td>
<td>0.420 *</td>
</tr>
<tr>
<td></td>
<td>[2.54]</td>
<td>[2.00]</td>
<td>[2.45]</td>
<td>[2.59]</td>
</tr>
</tbody>
</table>

No. of Observations	630	620	626	630
Number of Panels (Counties)	63	62	63	63
F-Statistic	274.2 **	1147 **	139.7 **	186 **
R-Squared	0.13	0.09	0.13	0.13
Within R-squared	0.07	0.07	0.07	0.07

Robust t-statistics in brackets from standard errors corrected for temporal and spatial dependence and heteroskedasticity. One-tailed tests: * p<0.05, ** p<0.01
Conclusion

• The increase in the rate NFF is highest when increase patents and incumbents is high.
• The second highest rate of NFF when high increase in patents and low incumbents.
• The third highest rate of NFF when low increase in patents and high incumbents.
• Knowledge is more important than incumbents which is what we expect from KSE.